My Robotics Book

Name: _____

Forward Movement

Backward Movement

Events

How to measure a wheel rotation

- 1. Program your robot to move 1 rotation.
- 2. Test your program.
- 3. Measure the distance in centimeters (cm).

* Note: Circumference of a wheel can be calculated using the formula: $C = \pi X \Gamma$

Example: $17.58 \text{ cm (circumference)} = 3.14 \times 5.6$

My Robot traveled _____ centimeters (cm) for one wheel rotation.

* Average measurement- Tire: 17.5 cm = 1 rotation

Example:

17.5 cm

Formula

Distance to travel

= # of rotations

27 cm = 1.54 rotations

Distance of 1 rotation

CLOSE SHAVE ACTIVITY

Formula	
Distance to travel	= # of rotations
Distance of 1 rotation	
Measurement #1:	
Measurement #2:	

Measurement #3:

How to measure a 360° pivot turn

Formula

$$2\pi$$
 X Radius = # of rotations

Distance of 1 rotation

Left Turn

Example:

$$\frac{2 \times 3.14 \times 5.5}{17.5 \text{ cm}} = 1.97 \text{ rotations}$$

set movement motors to B ▼ and C ▼

move (right: 60) for 1 | rotations ▼

set movement speed to 25 %

stop and exit program .

Right Turn

Events

Movement

Making a Loop

Sample program for a square.. Adjust the rotations to complete the square challenge.

Wait Block Sequence

Touch Sensor Sequence

Ultrasonic Sensor Sequence

Color Sensor Sequence

Stopping on a Line-Black

Control

Color Sensor Sequence

Follow the Line-Black

Movement

Control

Sensors

Movement

Need 2

Move the Attachment

Port: A

